Package 'pg'

Title: Polya Gamma Distribution Sampler
Description: Provides access to a series of highly performant random distribution samplers for the Polya Gamma Distribution as described by Polson, Scott, and Windle (2013) <arXiv:1205.0310> using either 'C++' headers for 'Rcpp' or 'RcppArmadillo' and 'R'. The 'C++' header approach was developed to enable computations in Balamuta (2021) <https://www.ideals.illinois.edu/items/121209>.
Authors: James Balamuta [aut, cre, cph]
Maintainer: James Balamuta <[email protected]>
License: GPL (>= 3)
Version: 0.2.4
Built: 2024-11-05 06:13:24 UTC
Source: https://github.com/tmsalab/pg

Help Index


Theoretical Polya Gamma Distribution's Mean and Variance

Description

Compute the theoretical mean and variance for a Polya Gamma variable.

Usage

pg_mean(h, z)

pg_var(h, z)

Arguments

h

A single integer value corresponding to the "shape" parameter.

z

A single numeric value corresponding to the "scale" parameter.

Value

Either the theoretical mean or theoretical variance for a Polya Gamma distribution.

Examples

# Fixed parameter distribution simulation ----

## Parameters  ----
h = 1; z = .5
## Attempt distribution recovery  ----
vector_of_pg_samples = rpg_vector(1e6, h, z)

head(vector_of_pg_samples)
length(vector_of_pg_samples)

## Obtain the empirical results   ----
empirical_mean = mean(vector_of_pg_samples)
empirical_var = var(vector_of_pg_samples)

## Take the theoretical values ----
theoretical_mean = pg_mean(h, z)
theoretical_var = pg_var(h, z)

## Form a comparison table ----

# empirically sampled vs. theoretical values
rbind(c(empirical_mean, theoretical_mean),
      c(empirical_var, theoretical_var))

Sample from the Polya Gamma distribution PG(h, z)

Description

Chooses the most efficient implemented method to sample from a Polya Gamma distribution. Details on algorithm selection presented below.

Usage

rpg_scalar(h, z)

rpg_vector(n, h, z)

rpg_hybrid(h, z)

rpg_gamma(h, z, trunc = 1000L)

rpg_devroye(h, z)

rpg_sp(h, z)

rpg_normal(h, z)

Arguments

h

integer values corresponding to the "shape" parameter.

z

numeric values corresponding to the "scale" parameter.

n

The number of samples to taken from a PG(h, z). Used only by the vector sampler.

trunc

Truncation cut-off. Only used by the gamma sampler.

Details

The following sampling cases are enabled:

  • h > 170: Normal approximation method

  • h > 13: Saddlepoint approximation method

  • h = 1 or h = 2: Devroye method

  • h > 0: Sum of Gammas method.

  • h < 0: Result is automatically set to zero.

Value

A single numeric value.

Examples

# Fixed parameter distribution simulation ----

## Parameters  ----
h = 1; z = .5

## Sample only one value  ----
single_value = rpg_scalar(h, z)
single_value

## Attempt distribution recovery  ----
vector_of_pg_samples = rpg_vector(1e6, h, z)

head(vector_of_pg_samples)
length(vector_of_pg_samples)

## Obtain the empirical results   ----
empirical_mean = mean(vector_of_pg_samples)
empirical_var = var(vector_of_pg_samples)

## Take the theoretical values ----
theoretical_mean = pg_mean(h, z)
theoretical_var = pg_var(h, z)

## Form a comparison table ----

# empirically sampled vs. theoretical values
rbind(c(empirical_mean, theoretical_mean),
      c(empirical_var, theoretical_var))

# Varying distribution parameters ----

## Generate varying parameters ----
u_h = 20:100
u_z = 0.5*u_h

## Sample from varying parameters ----
x = rpg_hybrid(u_h, u_z)