rRUM_indept

library(hmcdm)

Load the spatial rotation data

N = dim(Design_array)[1]
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]

(1) Simulate responses and response times based on the rRUM model

tau <- numeric(K)
for(k in 1:K){
  tau[k] <- runif(1,.2,.6)
}
R = matrix(0,K,K)
# Initial alphas
p_mastery <- c(.5,.5,.4,.4)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
  for(k in 1:K){
    prereqs <- which(R[k,]==1)
    if(length(prereqs)==0){
      Alphas_0[i,k] <- rbinom(1,1,p_mastery[k])
    }
    if(length(prereqs)>0){
      Alphas_0[i,k] <- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
    }
  }
}
Alphas <- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#> 
#>   0   1   2   3   4 
#>  38  98 137  68   9
Smats <- matrix(runif(J*K,.1,.3),c(J,K))
Gmats <- matrix(runif(J*K,.1,.3),c(J,K))
# Simulate rRUM parameters
r_stars <- Gmats / (1-Smats)
pi_stars <- apply((1-Smats)^Q_matrix, 1, prod)

Y_sim <- sim_hmcdm(model="rRUM",Alphas,Q_matrix,Design_array,
                   r_stars=r_stars,pi_stars=pi_stars)

(2) Run the MCMC to sample parameters from the posterior distribution

output_rRUM_indept = hmcdm(Y_sim,Q_matrix,"rRUM_indept",Design_array,
                           100,30,R = R)
#> 0
output_rRUM_indept
#> 
#> Model: rRUM_indept 
#> 
#> Sample Size: 350
#> Number of Items: 
#> Number of Time Points: 
#> 
#> Chain Length: 100, burn-in: 50
summary(output_rRUM_indept)
#> 
#> Model: rRUM_indept 
#> 
#> Item Parameters:
#>  r_stars1_EAP r_stars2_EAP r_stars3_EAP r_stars4_EAP pi_stars_EAP
#>        0.1420       0.5674       0.5659       0.5809       0.8576
#>        0.6138       0.1482       0.6094       0.5620       0.9023
#>        0.5903       0.5263       0.5929       0.3732       0.6638
#>        0.6775       0.5657       0.2399       0.5278       0.8380
#>        0.1947       0.3000       0.6021       0.6130       0.6492
#>    ... 45 more items
#> 
#> Transition Parameters:
#>    taus_EAP
#> τ1   0.3164
#> τ2   0.4639
#> τ3   0.5673
#> τ4   0.2454
#> 
#> Class Probabilities:
#>      pis_EAP
#> 0000 0.04978
#> 0001 0.05058
#> 0010 0.09310
#> 0011 0.05643
#> 0100 0.09097
#>    ... 11 more classes
#> 
#> Deviance Information Criterion (DIC): 22073.03 
#> 
#> Posterior Predictive P-value (PPP):
#> M1: 0.5232
#> M2:  0.49
#> total scores:  0.614
a <- summary(output_rRUM_indept)
head(a$r_stars_EAP)
#>           [,1]      [,2]      [,3]      [,4]
#> [1,] 0.1419869 0.5673534 0.5659281 0.5809410
#> [2,] 0.6137632 0.1482431 0.6094120 0.5620024
#> [3,] 0.5902780 0.5263124 0.5929408 0.3731520
#> [4,] 0.6775224 0.5657326 0.2399112 0.5277968
#> [5,] 0.1946883 0.2999615 0.6021230 0.6130080
#> [6,] 0.5237672 0.2974212 0.1273147 0.5874604

(3) Check for parameter estimation accuracy

(cor_pistars <- cor(as.vector(pi_stars),as.vector(a$pi_stars_EAP)))
#> [1] 0.9264962
(cor_rstars <- cor(as.vector(r_stars*Q_matrix),as.vector(a$r_stars_EAP*Q_matrix)))
#> [1] 0.9075435

AAR_vec <- numeric(L)
for(t in 1:L){
  AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.8492857 0.9107143 0.9421429 0.9585714 0.9600000

PAR_vec <- numeric(L)
for(t in 1:L){
  PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.5200000 0.6971429 0.7942857 0.8485714 0.8542857

(4) Evaluate the fit of the model to the observed response

a$DIC
#>              Transition Response_Time Response    Joint    Total
#> D_bar          2078.810            NA 17440.30 1876.274 21395.38
#> D(theta_bar)   2025.526            NA 16852.92 1839.292 20717.73
#> DIC            2132.095            NA 18027.68 1913.256 22073.03
head(a$PPP_total_scores)
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,] 1.00 0.10 0.26 0.94 0.96
#> [2,] 0.32 0.66 0.62 0.90 0.24
#> [3,] 0.48 0.72 0.48 0.82 0.20
#> [4,] 0.96 0.72 0.04 0.70 0.32
#> [5,] 0.96 0.82 0.98 0.76 0.60
#> [6,] 0.52 0.64 0.92 0.50 0.50
head(a$PPP_item_means)
#> [1] 0.48 0.54 0.50 0.48 0.48 0.46
head(a$PPP_item_ORs)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,]   NA 0.84 0.96 0.90 0.32 0.52 0.84 0.78 0.64  0.28  0.84  0.92  0.54  0.72
#> [2,]   NA   NA 0.98 0.72 0.84 0.58 0.20 0.22 0.58  0.32  0.24  0.54  0.24  0.46
#> [3,]   NA   NA   NA 0.66 0.98 0.78 0.92 0.86 0.80  0.56  0.66  0.32  0.86  0.44
#> [4,]   NA   NA   NA   NA 0.90 0.84 1.00 0.78 0.40  0.96  0.26  0.34  0.84  0.64
#> [5,]   NA   NA   NA   NA   NA 0.38 0.54 0.84 0.94  0.50  0.98  0.42  0.74  0.26
#> [6,]   NA   NA   NA   NA   NA   NA 0.46 0.48 0.40  0.46  0.26  1.00  0.78  0.42
#>      [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,]  0.88  0.10  0.24  0.78  0.46  1.00  0.84  0.18  0.34  0.26  0.94  0.46
#> [2,]  0.40  0.34  0.70  0.72  0.20  0.80  0.96  0.58  0.70  0.58  0.04  0.66
#> [3,]  0.24  0.28  0.78  0.82  0.26  0.68  0.62  0.30  0.30  0.96  0.98  0.12
#> [4,]  0.84  0.52  0.76  0.30  0.12  0.66  0.04  0.46  0.96  0.24  0.56  0.70
#> [5,]  0.72  0.68  0.92  0.54  0.12  0.44  0.48  0.16  0.80  0.40  0.12  0.60
#> [6,]  0.38  0.42  0.72  0.44  0.32  0.68  0.32  0.34  0.96  0.64  0.22  0.98
#>      [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,]  0.60  0.46  0.56  0.20  0.64  0.76  0.80  1.00  0.74  0.74  0.74  0.84
#> [2,]  0.98  0.60  0.28  0.42  0.58  0.08  0.84  0.70  0.86  0.76  0.72  0.32
#> [3,]  0.60  0.94  0.90  0.68  0.48  0.54  0.10  0.10  0.72  0.66  0.38  1.00
#> [4,]  0.46  0.98  0.24  0.42  0.52  0.82  0.16  0.92  0.48  0.46  0.78  0.72
#> [5,]  0.76  0.86  0.12  0.12  0.76  0.84  0.70  0.38  0.92  0.30  0.08  0.16
#> [6,]  0.96  0.72  0.26  0.28  0.98  0.82  0.74  0.66  0.56  0.34  0.10  0.86
#>      [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,]  0.84  0.14  0.52  0.50  0.48  0.12  0.98  0.50  0.06  0.52  0.68  0.48
#> [2,]  0.54  0.26  0.92  0.88  0.02  0.88  0.94  0.38  0.04  0.44  0.56  0.24
#> [3,]  0.54  0.70  0.86  0.94  0.42  0.74  0.76  0.00  0.18  0.82  0.28  0.38
#> [4,]  0.88  0.28  0.44  0.34  0.98  0.90  0.24  0.94  0.98  1.00  0.88  0.38
#> [5,]  0.24  0.20  0.54  1.00  0.26  0.32  0.88  0.50  0.76  0.90  0.88  0.70
#> [6,]  0.80  0.66  0.26  0.84  0.38  0.40  0.92  0.98  0.38  0.36  0.80  0.70