ETAs <- ETAmat(K, J, Q_matrix)
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
mu_thetatau = c(0,0)
Sig_thetatau = rbind(c(1.8^2,.4*.5*1.8),c(.4*.5*1.8,.25))
Z = matrix(rnorm(N*2),N,2)
thetatau_true = Z%*%chol(Sig_thetatau)
thetas_true = thetatau_true[,1]
taus_true = thetatau_true[,2]
G_version = 3
phi_true = 0.8
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
lambdas_true <- c(-2, .4, .055) # empirical from Wang 2017
Alphas <- sim_alphas(model="HO_joint",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 64 57 78 120 31
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
RT_itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true[,2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)
Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)
L_sim <- sim_RT(Alphas,Q_matrix,Design_array,
RT_itempars_true,taus_true,phi_true,G_version)
output_HMDCM_RT_joint = hmcdm(Y_sim,Q_matrix,"DINA_HO_RT_joint",Design_array,100,30,
Latency_array = L_sim, G_version = G_version,
theta_propose = 2,deltas_propose = c(.45,.25,.06))
#> 0
output_HMDCM_RT_joint
#>
#> Model: DINA_HO_RT_joint
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_HMDCM_RT_joint)
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1673 0.09386
#> 0.2128 0.18290
#> 0.1111 0.10748
#> 0.1525 0.10612
#> 0.1326 0.20154
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.87422
#> λ1 0.18022
#> λ2 0.09529
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1597
#> 0001 0.1758
#> 0010 0.1989
#> 0011 0.2119
#> 0100 0.1795
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 154096.9
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5204
#> M2: 0.49
#> total scores: 0.6245
a <- summary(output_HMDCM_RT_joint)
a
#>
#> Model: DINA_HO_RT_joint
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1673 0.09386
#> 0.2128 0.18290
#> 0.1111 0.10748
#> 0.1525 0.10612
#> 0.1326 0.20154
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.87422
#> λ1 0.18022
#> λ2 0.09529
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1597
#> 0001 0.1758
#> 0010 0.1989
#> 0011 0.2119
#> 0100 0.1795
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 154096.9
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.52
#> M2: 0.49
#> total scores: 0.6288
a$ss_EAP
#> [,1]
#> [1,] 0.16732267
#> [2,] 0.21280151
#> [3,] 0.11106709
#> [4,] 0.15254399
#> [5,] 0.13257797
#> [6,] 0.13627085
#> [7,] 0.19870128
#> [8,] 0.15621726
#> [9,] 0.17897035
#> [10,] 0.17210040
#> [11,] 0.15469951
#> [12,] 0.18412440
#> [13,] 0.21246399
#> [14,] 0.11063679
#> [15,] 0.23078036
#> [16,] 0.14171145
#> [17,] 0.14775895
#> [18,] 0.10901296
#> [19,] 0.17306186
#> [20,] 0.16469536
#> [21,] 0.19246733
#> [22,] 0.17671904
#> [23,] 0.18656314
#> [24,] 0.16892639
#> [25,] 0.13957136
#> [26,] 0.13376516
#> [27,] 0.26220253
#> [28,] 0.18748245
#> [29,] 0.18157060
#> [30,] 0.09170670
#> [31,] 0.18621950
#> [32,] 0.14279553
#> [33,] 0.16948927
#> [34,] 0.10053940
#> [35,] 0.09706387
#> [36,] 0.09500953
#> [37,] 0.23002014
#> [38,] 0.20243444
#> [39,] 0.14741026
#> [40,] 0.17389245
#> [41,] 0.20792716
#> [42,] 0.21651258
#> [43,] 0.12087518
#> [44,] 0.12486395
#> [45,] 0.14737296
#> [46,] 0.13874216
#> [47,] 0.13870303
#> [48,] 0.27791396
#> [49,] 0.13286808
#> [50,] 0.16928385
head(a$ss_EAP)
#> [,1]
#> [1,] 0.1673227
#> [2,] 0.2128015
#> [3,] 0.1110671
#> [4,] 0.1525440
#> [5,] 0.1325780
#> [6,] 0.1362708
(cor_thetas <- cor(thetas_true,a$thetas_EAP))
#> [,1]
#> [1,] 0.8112809
(cor_taus <- cor(taus_true,a$response_times_coefficients$taus_EAP))
#> [,1]
#> [1,] 0.9873944
(cor_ss <- cor(as.vector(itempars_true[,1]),a$ss_EAP))
#> [,1]
#> [1,] 0.6046299
(cor_gs <- cor(as.vector(itempars_true[,2]),a$gs_EAP))
#> [,1]
#> [1,] 0.6419391
AAR_vec <- numeric(L)
for(t in 1:L){
AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.9314286 0.9535714 0.9478571 0.9607143 0.9585714
PAR_vec <- numeric(L)
for(t in 1:L){
PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.7657143 0.8314286 0.8142857 0.8514286 0.8542857
a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 2268.025 132651.1 15063.69 3141.523 153124.3
#> D(theta_bar) 2012.570 132215.3 14928.20 2995.695 152151.7
#> DIC 2523.479 133086.9 15199.18 3287.351 154096.9
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.36 0.88 0.86 0.84 1.00
#> [2,] 0.94 0.64 0.86 0.40 0.62
#> [3,] 0.54 0.88 0.54 0.78 0.80
#> [4,] 0.62 0.78 0.92 0.54 0.38
#> [5,] 0.82 0.50 0.86 0.84 0.40
#> [6,] 0.94 0.86 0.42 0.42 0.80
head(a$PPP_total_RTs)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.46 0.48 0.36 0.74 0.10
#> [2,] 0.84 0.22 0.24 0.12 0.70
#> [3,] 0.72 0.00 0.62 0.44 0.48
#> [4,] 0.46 0.30 0.80 0.86 0.68
#> [5,] 0.24 0.34 0.96 0.34 0.78
#> [6,] 0.42 0.06 0.16 0.52 0.86
head(a$PPP_item_means)
#> [1] 0.50 0.54 0.48 0.52 0.66 0.60
head(a$PPP_item_mean_RTs)
#> [1] 0.38 0.50 0.46 0.66 0.58 0.70
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.18 0.62 0.98 0.66 0.46 0.44 0.44 0.92 0.58 0.74 0.74 0.72 0.56
#> [2,] NA NA 0.84 0.84 0.32 0.44 0.56 0.62 0.96 0.88 0.28 0.84 0.66 0.30
#> [3,] NA NA NA 0.60 0.76 0.50 0.36 0.80 0.66 0.24 0.66 0.96 0.34 0.54
#> [4,] NA NA NA NA 0.88 0.86 0.78 0.68 0.70 0.88 0.62 0.88 0.22 0.80
#> [5,] NA NA NA NA NA 0.36 0.68 0.76 0.94 0.78 0.12 0.48 0.62 0.90
#> [6,] NA NA NA NA NA NA 0.56 0.62 0.04 0.60 0.28 0.40 0.06 0.10
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.04 0.74 0.60 0.38 0.50 0.38 0.46 0.20 0.80 0.52 0.88 0.66
#> [2,] 0.20 0.44 0.58 0.74 0.18 0.84 0.22 0.14 0.22 0.28 0.50 0.22
#> [3,] 0.24 0.18 0.98 0.68 0.66 0.50 0.34 0.36 0.60 0.16 1.00 0.86
#> [4,] 0.30 0.84 0.86 0.52 0.18 0.98 1.00 0.52 0.26 0.46 0.90 0.62
#> [5,] 0.56 0.42 0.52 0.46 0.74 0.16 0.26 0.58 0.34 0.86 0.86 0.42
#> [6,] 0.70 0.00 0.78 0.94 0.40 0.46 0.80 0.42 0.36 0.78 0.62 0.50
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.68 0.14 0.34 0.72 0.32 0.52 0.66 0.14 0.42 0.58 0.20 0.72
#> [2,] 0.30 0.12 0.60 0.28 0.20 0.64 0.78 0.40 0.10 0.60 0.12 0.28
#> [3,] 0.44 0.30 0.72 0.28 0.36 0.92 0.60 0.70 0.88 0.44 0.86 0.90
#> [4,] 0.70 0.70 0.78 0.92 0.76 0.22 0.80 0.80 0.24 0.18 0.22 0.66
#> [5,] 0.38 0.34 0.66 0.56 0.12 0.24 0.14 0.52 0.16 0.64 0.48 0.50
#> [6,] 0.00 0.16 0.86 0.18 0.22 0.78 0.82 0.84 0.06 0.64 0.28 0.94
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.36 0.26 0.60 0.60 0.06 0.50 0.54 0.38 0.64 0.26 0.80 0.22
#> [2,] 0.58 0.36 0.74 0.90 0.84 0.14 0.16 0.18 0.22 0.48 0.52 0.14
#> [3,] 0.30 0.64 0.44 0.74 0.66 0.20 0.64 0.60 0.96 0.40 0.80 0.92
#> [4,] 0.02 0.82 0.22 0.72 0.08 0.96 0.76 0.46 0.88 0.64 0.82 0.18
#> [5,] 0.10 0.26 0.68 0.10 0.82 0.64 0.22 0.16 0.46 0.52 0.42 0.42
#> [6,] 0.28 0.36 0.44 0.06 0.66 0.98 0.66 0.36 0.46 0.22 0.88 0.72