--- title: "Estimating the Model in the Paper" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Estimating the Model in the Paper} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Intro The objective of this vignette is to provide clarity as to the estimation procedure used to obtain the results in the paper. This vignette breaks down each section in the example displayed in `cIRT()` function. # Data Within this vignette, we used two different data sets to generate a Choice Item Response Theory Model with the routine located in `cIRT`. ```{r load_pkg} library(cIRT) ``` The first data set, `trial_matrix`, contains whether or not the subject correctly identified the spatial rotation. The second dataset, `choice_matrix`, provides information regarding the choice decision subjects were asked to make. ```{r load_data} data(trial_matrix) data(choice_matrix) ``` # Constructing the Model Matrix Here we construct a thurstone design matrix by obtaining the IDs of hard and easy questions presented for the subject to make a decision upon. ```{r thurstone_design} # Create the Thurstone Design Matrices hard_items = choice_matrix$hard_q_id easy_items = choice_matrix$easy_q_id D_easy = model.matrix( ~ -1 + factor(easy_items)) D_hard = -1 * model.matrix( ~ -1 + factor(hard_items))[, -c(5, 10, 15)] ``` Within this setting, we setup the effect-codes for different constraints. ```{r effect_coding} # Defining effect-coded contrasts high_contrasts = rbind(-1, diag(4)) rownames(high_contrasts) = 12:16 low_contrasts = rbind(-1, diag(2)) rownames(low_contrasts) = 4:6 # Creating high & low factors high = factor(choice_matrix[, 'high_value']) low = factor(choice_matrix[, 'low_value']) contrasts(high) = high_contrasts contrasts(low) = low_contrasts fixed_effects = model.matrix( ~ high + low) fixed_effects_base = fixed_effects[, 1] fixed_effects_int = model.matrix( ~ high * low) ``` # Modeling the Data Generate the cIRT model using a Thurstone Design Matrix generated above. ```{r model_data} # Model with Thurstone D matrix system.time({ out_model_thurstone = cIRT( choice_matrix[, 'subject_id'], cbind(fixed_effects[, -1], D_easy, D_hard), c(1:ncol(fixed_effects)), as.matrix(fixed_effects), as.matrix(trial_matrix), choice_matrix[, 'choose_hard_q'], 20000, 25000 ) }) ``` We recommend saving the model object as a `.rda` file even though the total computational time is less than 2.5 minutes. ``` ## Save model output to an rda file. # save(out_model_thurstone, file='choiceMCMCoutput.rda') ## Load model output back into R. # load(file='choiceMCMCoutput.rda') ``` # Parameter Estimates Next up, we obtain the parameter estimates of the model by averaging over the different estimates obtained via the Gibbs sampling technique employed. ```{r param_ests} vlabels_thurstone = colnames(cbind(fixed_effects[, -1], D_easy, D_hard)) G_thurstone = t(apply( out_model_thurstone$gs0, 2, FUN = quantile, probs = c(.5, .025, .975) )) rownames(G_thurstone) = vlabels_thurstone B_thurstone = t(apply( out_model_thurstone$beta, 2, FUN = quantile, probs = c(.5, 0.025, .975) )) rownames(B_thurstone) = colnames(fixed_effects) S_thurstone = solve( apply(out_model_thurstone$Sigma_zeta_inv, c(1, 2), FUN = mean) ) inv_sd = diag(1 / sqrt(diag(solve( apply(out_model_thurstone$Sigma_zeta_inv, c(1, 2), FUN = mean) )))) corrmat = inv_sd %*% S_thurstone %*% inv_sd as = apply(out_model_thurstone$as, 2, FUN = mean) bs = apply(out_model_thurstone$bs, 2, FUN = mean) ``` Thus, we have the following results: ```{r param_results} # gs0 G_thurstone # betas B_thurstone # Sigma Thurstone S_thurstone ## Item parameters ---- # a as # b bs ```